Assessment of Changes in Metabolic Activity in Liver & Skeletal Muscle in Patients Suffering From Acromegaly

Learn more about:
Related Clinical Trial
Rhinological Outcomes in Endonasal Pituitary Surgery Co-treatment With Pegvisomant and a Somatostatin Analogue (SA) in SA-responsive Acromegalic Patients Study to Allow Access to Pasireotide for Patients Benefiting From Pasireotide Treatment in Novartis-sponsored Studies A Four-Part Study to Assess the Safety, Tolerability, PK and PD of ONO-5788 in Healthy Adult Volunteers The Effect of Subcutaneous Infusions of 3 Doses of DG3173 on Growth Hormone Levels in Untreated Acromegalics One Year Follow-up of Study 2-79-52030-207 (PRIMARYS) in Acromegalic Patients With Macroadenoma Study in Polish Acromegalic Patients Treated With Somatuline Autogel Long Term Use of Somavert (Pegvisomant) For A Regulatory Post Marketing Commitment Plan Predictive Factors of Response to Somatostatin Analogues in Acromegalic Patients With Persistent Disease Following Surgery The Observational Study of Growth Hormone-secreting Pituitary Tumors Change in Quality of Life After Addition of Weekly 40 mg Pegvisomant/Placebo in Controlled Acromegalic Patients Study to Evaluate the Efficacy and Safety of Sandostatin LAR at High Dose or in Combination Either With GH-receptor Antagonist or Dopamine-agonist in Acromegalic Patients Efficacy and Safety of Lanreotide Autogel (60, 90 or 120 mg) in Acromegalic Patients Substrate Metabolism and Insulin Sensitivity in Acromegalic Patients Before and After Treatment Single-dose Study to Evaluate the Absolute Bioavailability and Mass Balance of ONO-5788 Study Comparing SOM230 Subcutaneously and Sandostatin Subcutaneously in Acromegalic Patients Therapeutic Strategies in Acromegalic Subjects Treated With Lanreotide 120mg Preoperative Lanreotide Treatment in Acromegalic Patients With Macroadenomas Study to Assess the Efficacy of an Extended Injection Interval Schedule of Lanreotide Autogel in Acromegalic Subjects Phase II Study With ITF2984 in Acromegalic Patients Non Interventional Study For Patients Treated With Somavert® Single Dose Pharmacology Study of DG3173 and Octreotide in Acromegalic Patients. Estrogen Treatment in Acromegalic Women Pharmacodynamics Of Product Octreotide Acetate Lar 30 Mg, Imported And Distributed By The Laboratory Chemical Pharmaceutical Bergamo Ltda., Compared To Product Sandostatin LAR ® (Octreotide Acetate LAR) 30 MG Manufactured By Novartis Biosciences S / A. ACRODAT Prospective Evaluation Study Pegvisomant And Sandostatin LAR Combination Study Lanreotide as Primary Treatment for Acromegalic Patients With Pituitary Gland Macroadenoma Open Label Extension Study Evaluating Safety and Biological Activity of C2L-OCT-01 PR in Acromegalic Patients Efficacy and Safety of C2L-OCT-01 PR in Acromegalic Patients Efficacy of Octreotide Acetate and Cabergoline in Patients With Acromegaly Canadian Pegvisomant Compassionate Study In Acromegalic Patients Efficacy and Safety Study of Varying Doses of Lanreotide Autogel in Patients With Acromegaly Hormonal Outcomes in Acromegalic Patients With Treated Surgery With or Without Long Acting Somatostatin Analogues Tissue Biomarker for Pegvisomant Action Sandostatin LAR Depot vs. Surgery for Treating Acromegaly Safety and Efficacy of Octreotide Long Acting Release (LAR) in Treatment Naïve Acromegalic Patients Lanreotide Autogel 120 mg at Extended Dosing Intervals (>4 Weeks) in Acromegalic Subjects Comparable Effects of Lanreotide Autogel and Octreotide LAR on GH, IGF-I Levels and Patient Satisfaction Predictive Factors Study Sleep Apnea Syndrome on Acromegaly: Impact of the Treatment on the Carbohydrates Metabolism. Growth Hormone Feedback to Insulin-like Growth Factor-I (IGF-1) and Oral Glucose Tolerance Test (OGTT) Somatostatin Analog Treatment of Acromegaly Before Pituitary Surgery : Comparison With Neurosurgery Alone Effect of 120mg Somatuline Autogel at Different Dose Intervals (28, 42 or 56 Days) in Patients With Acromegaly Acromegaly – Before and After Treatment Study to Assess the Efficacy and Safety of Repeated Administration of BIM 23A760 in Patients With Acromegaly Measurement of Outcome of Surgical Treatment in Patients With Acromegaly Non Interventional Post Marketing Programme in Acromegaly Short and Long Term Efficacy of Combined Cabergoline and Octreotide Treatment in Acromegalic Patients Cardiovascular Outcome After Surgery or Somatostatin Analogues Efficacy/Safety of Octreotide Acetate in Patients With Uncontrolled Acromegaly Study Assessing the Efficacy and Safety of Octreotide Acetate in Patients With Acromegaly, With Micro or Macroadenomas Long Term Study With B2036-PEG Octreotide Efficacy and Safety in First-line Acromegalic Patients Long-term Safety and Efficacy Study of Octreotide Implant in Patients With Acromegaly An Extension Study to Assess the Long-term Safety and Efficacy of Pasireotide in Patients With Acromegaly Study of the Effect of Growth Hormone-Releasing Hormone Antagonist on Growth Hormone Release in Acromegaly Clomiphene Citrate for Treatment of Acromegaly Cardiac (CMRI) Assessment of Acromegaly Acromegaly Combination Treatment Study Efficacy and Safety of Octreotide Capsules (MYCAPSSA) in Acromegaly Assessment of Changes in Metabolic Activity in Liver & Skeletal Muscle in Patients Suffering From Acromegaly Changes of Left Ventricular Mass and Cardiac Function in Patients With Active Acromegaly During Treatment With the Growth Hormone Receptor Antagonist Pegvisomant Assessment of BIM23B065, Given as Repeated Subcutaneous Injection in Subjects With Acromegaly A Study to Evaluate the Risk of Developing a Heart Condition Called Valvular Regurgitation in Patients With Acromegaly Treated With Either Lanreotide or Octreotide Pasireotide LAR and Pegvisomant Study in Acromegaly Effects of Sandostatin LAR® in Acromegaly Open Label Study of Octreotide Implant in Patients With Acromegaly Efficacy and Safety Study of Octreotide Implant in Patients With Acromegaly Somatuline Autogel: Acromegaly Self/Partner Injection Study A Study To Compare The Efficacy And Safety Of Pegvisomant To That Of Sandostatin Lar Depot In Patients With Acromegaly Efficacy and Tolerability of Lanreotide (Autogel 120 mg) in Patients With Acromegaly Study to Predict Lanreotide-induced Disease Activity Normalization in Acromegaly Impact of Somatostatin Analogs vs. Surgery on Glucose Metabolism in Acromegaly Prospective Study on Changes in Acromegaly Study to Determine the Maximum Tolerated Dose, Safety and Tolerability of a Single Dose of Lanreotide Prolonged Release Formulation (PRF) in Subjects With Acromegaly Dose Escalation of Octreotide-LAR as First-Line Therapy in Resistant Acromegaly Assessment of the Ability of Subjects With Acromegaly or Their Partners to Administer Somatuline Autogel Efficacy and Safety of Lanreotide Autogel® 60, 90 or 120 mg With Lanreotide 40 mg Prolonged Release (PR) in Acromegaly An Open-label, Multi-center, Expanded Treatment Protocol of Pasireotide LAR in Patients With Acromegaly Assessment of Airway in Patients With Acromegaly for Predicting Successful Tracheal Intubation Quality of Life (QoL) in Subjects With Acromegaly Under Lanreotide Autogel® Treatment. A Study to Evaluate the Long-Term Safety and Efficacy of Paltusotine for the Treatment of Acromegaly (ACROBAT Advance) An Study to Evaluate the Safety and Efficacy of Paltusotine for the Treatment of Acromegaly (ACROBAT Edge) Study to Evaluate Patients With Acromegaly Treated With Lanreotide Autogel (Somatuline ATG) IGF-I and Free Fatty Acids Isn Glucose Metabolism in Acromegaly Safety and Efficacy of Pasireotide Long Acting Release (LAR) vs. Octreotide LAR in Patients With Active Acromegaly Study of Management of Pasireotide-induced Hyperglycemia in Adult Patients With Cushing’s Disease or Acromegaly Growth Hormone, IGF-1 and Medical Treatment in Acromegaly: Are There Effects on Gut Hormone Physiology and Postprandial Substrate Metabolism? Efficacy and Safety of Pasireotide Long Acting Release (LAR) Versus Octreotide LAR or Lanreotide Autogel (ATG) in Patients With Inadequately Controlled Acromegaly Rehabilitation Program in Patients With Acromegaly Acute Application of Pegvisomant and Octreotide in Acromegaly Lanreotide Autogel-120 mg as First-Line Treatment of Acromegaly Prediction of Tumor Shrinkage in Acromegaly Somatostatin Analogue Treatment of Acromegaly: Molecular Aspects Safety and Efficacy of Long-acting Repeatable Octreotide Acetate for Injectable Suspension vs. Surgery in Treatment-naïve Patients With Acromegaly SAGIT for Classification of Patients With Acromegaly in Clinical Practice Lanreotide Autogel in Patients With Acromegaly Previously Treated With Octreotide LAR Olfactory Function and Olfactory Bulb Volume in Acromegaly Patients Late Effects of Radiosurgery on Acromegaly Study Ultrasound Guided Octreotide LAR Injection in Acromegaly Comparison of Oral Octreotide Capsules to Injectable Somatostatin Analogs in Acromegaly A Trial to Assess the Long-term Safety of Octreotide Subcutaneous Depot in Patients With Acromegaly Safety, Tolerability, and Efficacy of IONIS-GHR-LRx in Patients With Acromegaly Being Treated With Long-acting Somatostatin Receptor Ligands A Trial to Assess Efficacy and Safety of Octreotide Subcutaneous Depot in Patients With Acromegaly Strict IGF-1 Control in Acromegaly Extension Study of IONIS-GHR-LRx Administered to Participants With Acromegaly Being Treated With Long-acting Somatostatin Receptor Ligands Treatment of Acromegaly With Somatostatin Analogs: GH vs. IGF-I as Primary Biochemical Target Fractionated Stereotactic Radiotherapy in Patients With Acromegaly Validation Study of the SAGIT® Instrument in Acromegaly Developing a Simple Recognition System of Acromegaly Glucose Tolerance in Acromegaly: The Influence of GH-excess on Glucose Metabolism and Insulin Resistance Surgical Versus Medical Treatment of Acromegaly A Study to Evaluate the Safety and Efficacy of Paltusotine for the Treatment of Acromegaly (ACROBAT Evolve) Acromegaly & Sleep Apnoea Somatuline Predictive Factors in Acromegaly and NET Acromegaly Treatment Quality of Life Study Lanreotide Levels in Acromegaly Description of Sign-and-symptom Associations at Acromegaly Diagnosis. Treatment Patterns and Treatment Outcomes for Acromegaly Ectopic Lipid Deposition and Insulin Resistance in After Treatment of Acromegaly Physiopathology of Sodium Retention in Acromegaly Somatuline® Depot (Lanreotide) for Acromegaly Post-Marketing Observational Study Peri- and Post-operative Dynamics of the Growth Hormone Axis in Subjects With Acromegaly During the First Year After Surgical Resection The Longitudinal Approach to Acromegaly: A Pattern of Treatment and Comparative Effectiveness Research Preoperative Octreotide Treatment of Acromegaly The Treatment and Natural History of Acromegaly Bone MicroArchitecture in Acromegaly Reproducibility and Utility of OGTT in Acromegaly A Prospective Study of Outcome After Therapy for Acromegaly Epidemiology of Acromegaly in Denmark 1991-2010 Programme of Acromegaly Screening in Patients With Associated Somatic Disorders Acromegaly: Patient And Physician Perspectives

Brief Title

Assessment of Changes in Metabolic Activity in Liver & Skeletal Muscle in Patients Suffering From Acromegaly

Official Title

Assessment of Changes in Metabolic Activity in Liver & Skeletal Muscle in Patients Suffering From Acromegaly - a 31P/1H Magnetic Resonance Spectroscopy Pilot Study

Brief Summary

      Growth hormone (GH) plays a pivotal role in the regulation of body composition including
      ectopic lipid deposition in insulin sensitive organs like liver and skeletal muscle. Recent
      evidence indicates that the GH-IGF1 axis affects body composition via regulating
      mitochondrial oxidation capacity.

      Thus, excessive GH secretion by a pituitary adenoma (Acromegaly) might be accompanied by
      increased mitochondrial activity leading to inappropriately low intracellular lipid depots,
      especially in metabolically active tissue like liver and skeletal muscle.

      This study aims to assess metabolic activity and intracellular lipid content in skeletal
      muscle and liver in patients suffering from acromegaly compared to controls by 31P/1H
      Magnetic resonance spectroscopy before and in follow up examinations 3, 6 and 12 months after
      initiation of GH lowering treatments including surgery, somatostatinanalogs or pegvisomant,
      as well as oral glucose tolerance tests at each examination to assess treatment responses and
      calculate validated parameters for insulin sensitivity and resistance.
    

Detailed Description

      Background: Growth hormone (GH) plays a pivotal role in the regulation of body composition
      including ectopic lipid deposition in insulin sensitive organs like liver and skeletal
      muscle. Direct inhibition of growth hormone action by a receptor antagonist has been shown to
      induce hepatic steatosis and growth hormone replacement decreases liver fat content in obese
      humans. Of note, recent evidence indicates that the GH-IGF1 axis affects body composition via
      regulating mitochondrial oxidation capacity.

      Hypothesis: Direct and/or indirect effects of GH on mitochondrial function might mediate the
      changes in body composition and lipid deposition. Thus, excessive GH secretion by a pituitary
      adenoma (Acromegaly) might be accompanied by increased mitochondrial activity leading to
      inappropriately low intracellular lipid depots, especially in metabolically active tissue
      like liver and skeletal muscle.

      Aim: Assessment of metabolic activity and intracellular lipid content in skeletal muscle and
      liver in patients suffering from acromegaly compared to controls.

      Methods: Non-interventional study:

        -  31P/1H Magnetic resonance spectroscopy before and in follow up examinations 3, 6 and 12
           months after initiation of GH lowering treatments including surgery, somatostatinanalogs
           or pegvisomant.

        -  oral glucose tolerance tests at each examination to assess treatment responses and
           calculate validated parameters for insulin sensitivity and resistance.
    


Study Type

Observational


Primary Outcome

Changes in hepatic energy metabolism

Secondary Outcome

 Changes in hepatic lipid content

Condition

Acromegaly

Intervention

1H/31P Magnetic Resonance Spectroscopy

Study Arms / Comparison Groups

 Acromegalic patients
Description:  Acromegalic patients before and after initiation of individual therapy will be investigated by 1H/31P magnetic resonance spectroscopy, thyroid sonography and oral glucose tolerance testing

Publications

* Includes publications given by the data provider as well as publications identified by National Clinical Trials Identifier (NCT ID) in Medline.

Recruitment Information


Recruitment Status

Other

Estimated Enrollment

24

Start Date

August 2014

Completion Date

May 2018

Primary Completion Date

May 2017

Eligibility Criteria

        Inclusion Criteria:

          -  age between 18-75 years

        Exclusion Criteria:

          -  (known) overt diabetes mellitus

          -  known coronary artery disease (history of myocardial infarction or angina pectoris)

          -  acute or chronic (inflammatory, metabolic [hyperlipidemia, arterial hypertension,
             thyroid disorder]) disease (healthy controls)

          -  intake of medication potentially affecting glucose or lipid metabolism

          -  metal devices or other magnetic material in or on the subjects body which will be
             hazardous for NMR investigation [heart pacemaker, brain (aneurysm) clip, nerve
             stimulators, electrodes, ear implants, post coronary by-pass graft (epicardial pace
             wires), penile implants, colored contact lenses, patch to deliver medications through
             the skin, coiled spring intrauterine device, vascular filter for blood clots,
             orthodontic braces, shunt- spinal or ventricular, any metal implants (rods, joints,
             plates, pins, screws, nails, or clips without MR-authorization), embolization coil, or
             any metal fragments or shrapnel in the body].

          -  tendency toward claustrophobia

          -  severe liver disorders (plasma transaminases elevated > 3fold)

          -  any acute inflammatory disease within 2 weeks prior the study

          -  pregnancy

          -  nursing

          -  clinically relevant anemia
      

Gender

All

Ages

18 Years - 75 Years

Accepts Healthy Volunteers

Accepts Healthy Volunteers

Contacts

Michael Krebs, MD, Prof., 00431404004311, [email protected]

Location Countries

Austria

Location Countries

Austria

Administrative Informations


NCT ID

NCT02115906

Organization ID

THIGHT_2


Responsible Party

Principal Investigator

Study Sponsor

Medical University of Vienna


Study Sponsor

Michael Krebs, MD, Prof., Principal Investigator, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria


Verification Date

September 2016