Targeting the Mechanisms Underlying Cutaneous Neurofibroma Formation in NF1: A Clinical Translational Approach.

Learn more about:
Related Clinical Trial
NFX-179 Topical Gel Treatment for Adults With Neurofibromatosis 1 (NF1) and Cutaneous Neurofibromas (cNF) Mechanism of Action of Transcranial Direct Current Stimulation in Neurofibromatosis Type 1 Study to Evaluate the Safety, Tolerability, PK Characteristics and Anti-tumor Activity of FCN-159 in Adult and Pediatric Participants With Neurofibromatosis Type 1 Evaluating Genetic Modifiers of Cutaneous Neurofibromas in Adults With Neurofibromatosis Type 1 Efficacy and Safety of Selumetinib in Adults With NF1 Who Have Symptomatic, Inoperable Plexiform Neurofibromas Systematically Assessing Changes in Plexiform Neurofibroma Related Disfigurement From Photographs of Subjects With Neurofibromatosis Type 1 on a Phase 2 Clinical Trial Pilot Randomized Control Trial of Telehealth Group for Improving Peer Relationships (PEERS) in NF1 Open Trial of Telehealth Group for Improving Peer Relationships (PEERS) in NF1 Identification of Pre-Malignant Lesions In Pediatric Patients With Neurofibromatosis Type 1 Using Novel Magnetic Resonance Imaging Techniques Paired With Artificial Intelligence A Study of Selumetinib in Chinese Paediatric and Adult Subjects With Neurofibromatosis Type 1 (NF1) and Inoperable Plexiform Neurofibromas (PN) Innovation in the Treatment of Persistent Pain in Adults With NF1: Implementation of the iCanCope Mobile Application- Clinical Trial Antioxidant Therapy With N-acetylcysteine for Children With Neurofibromatosis Type 1 Antioxidant Therapy With N-acetylcysteine for Learning and Motor Behavior in Children With Neurofibromatosis Type 1 A Long-term Study of NPC-12G Gel in Neurofibromatosis Type I NFX-179 Topical Gel Treatment in Adults With Neurofibromatosis 1 (NF1) and Cutaneous Neurofibromas (cNF) Analysis of Data Collected From Individuals Administered Neurobehavioral Assessments Trametinib in Treating Patients With Relapsed or Refractory Juvenile Myelomonocytic Leukemia Comparison of Gastrointestinal Motility in Healthy Children and Children With Constipation AZD6244 Hydrogen Sulfate for Children With Nervous System Tumors Photodynamic Therapy for Benign Dermal Neurofibromas- Phase II Phase II Study of Gleevec/Imatinib Mesylate (STI-571, NCS 716051) in Neurofibromatosis (NF1) Patients With Plexiform Neurofibromas Medical Treatment of “High-Risk” Neurofibromas Fludeoxyglucose F 18 Positron Emission Tomography and Magnetic Resonance Perfusion Imaging in Patients With Neurofibromatosis 1 and Plexiform Neurofibroma Whole Body MRI to Identify Atypical Neurofibromas in Patients With NF1 Use of Topical Liquid Diclofenac Following Laser Microporation of Cutaneous Neurofibromas in Patients With NF1 Development and Validation of Patient Reported Outcome (PRO) Measures for Individuals With Neurofibromatosis 1 (NF1) and Plexiform Neurofibromas (PNs) Combination Chemotherapy in Treating Patients With Neurofibromatosis and Progressive Plexiform Neurofibromas Pilot Study of Gleevec/Imatinib Mesylate (STI-571, NSC 716051) in Neurofibromatosis (NF1) Patient With Plexiform Neurofibromas Treatment of NF1-related Plexiform Neurofibroma With Trametinib Subtle Myocardial Deformation Abnormalities in Asymptomatic Nf-1 Patients R115777 to Treat Children With Neurofibromatosis Type 1 and Progressive Plexiform Neurofibromas Use of RAD001 as Monotherapy in the Treatment of Neurofibromatosis 1 Related Internal Plexiform Neurofibromas Pirfenidone in Children and Young Adults With Neurofibromatosis Type I and Progressive Plexiform Neurofibromas Study of Tasigna®/Nilotinib (AMN107) in Neurofibromatosis (NF1) Patients With Plexiform Neurofibromas Ranibizumab for Neurofibromas Associated With Neurofibromatosis 1 AZD2171 in Treating Patients With Neurofibromatosis Type 1 and Plexiform Neurofibroma and/or Neurofibroma Near the Spine MEK 1/2 Inhibitor Selumetinib (AZD6244 Hydrogen Sulfate) in Adults With Neurofibromatosis Type 1 (NF1) and Inoperable Plexiform Neurofibromas Study of Sutent®/Sunitinib (SU11248) in Subjects With NF-1 Plexiform Neurofibromas Neurofibromatosis Type 1 Brain Tumor Genetic Risk Acceptance and Commitment Therapy for Adolescents and Young Adults With Neurofibromatosis and Chronic Pain Phase II Study of Binimetinib in Children and Adults With NF1 Plexiform Neurofibromas Adaptation and Quality of Life Among Adults With Neurofibromatosis Type I Reliability of Functional Outcome Measures in Neurofibromatosis 1 Cabozantinib for Plexiform Neurofibromas (PN) in Subjects With NF1 in Children and Adults Medication Adherence in Children, Adolescents and Adults With Neurofibromatosis Type 1 (NF1) on Clinical Treatment Trials Targeting the Mechanisms Underlying Cutaneous Neurofibroma Formation in NF1: A Clinical Translational Approach. Sorafenib to Treat Children and Young Adults With Neurofibromatosis Type 1 and Inoperable Plexiform Neurofibromas Mitogen Activated Protein Kinase Kinase (MEK1/2) Inhibitor Selumetinib (AZD6244 Hydrogen Sulfate) in People With Neurofibromatosis Type 1 (NF1) Mutated Gastrointestinal Stromal Tumors (GIST) Quality of Friendships in Children With Neurofibromatosis Study of Disease Severity in Adults With Neurofibromatosis Type 1 (NF1) MEK Inhibitor Mirdametinib (PD-0325901) in Patients With Neurofibromatosis Type 1 Associated Plexiform Neurofibromas Interventions for Reading Disabilities in NF1 Everolimus for Treatment of Disfiguring Cutaneous Lesions in Neurofibromatosis1 CRAD001CUS232T Clinical Trial of Pirfenidone in Adult Patients With Neurofibromatosis 1 Acceptance and Commitment Training for Adolescents and Young Adults With Neurofibromatosis Type 1, Plexiform Neurofibromas, and Chronic Pain Neurobiology and Treatment of Reading Disability in NF-1 From Molecules to Cognition: Inhibitory Mechanisms in ASD and NF1 Vitamin D Supplementation for Adults With Neurofibromatosis Type 1 (NF1) Efficacy of Computerized Cognitive Training and Stimulant Medication in Neurofibromatosis Type 1 Analysis of Plasma for Diagnosis and Follow-up of Neurofibromatosis Type 1 Study About Annoucement of the Diagnosis of Neurofibromatosis 1 in de Novo Forms MicroRNAs in Patients With Neurofibromatosis Type 1 Pirfenidone in Treating Young Patients With Neurofibromatosis Type 1 and Plexiform Neurofibromas Stem Cells in NF1 Patients With Tumors of the Central Nervous System Function of the Pigment Epithelium in Patients With Type 1 Neurofibromatosis NF1-Attention: Study of Children With Neurofibromatosis Type 1 Treated by Methylphenidate Trial to Evaluate the Safety of Lovastatin in Individuals With Neurofibromatosis Type I (NF1) Internet Support Group for Parents of a Child With Neurofibromatosis Type 1 Reading Disability in Children With NF1 Multi-center Project: Spinal Abnormalities in Neurofibromatosis Type1 (NF1) Patients Functional Imaging and Reading Deficit in Children With NF1 Effects of Physical Training on Bone and Muscle Quality, Muscle Strength, and Motor Coordination in Children With NF1 Effect of Lamotrigine on Cognition in NF1 A Phase II Study of the mTOR Inhibitor Sirolimus in Neurofibromatosis Type 1 Related Plexiform Neurofibromas A Randomized Placebo-Controlled Study of Lovastatin in Children With Neurofibromatosis Type 1 Neurofibromatosis Type 1 (NF1) and Tibial Dysplasia Non-invasive Stimulation in Neurofibromatosis Type 1 Modifying Genes in Neurofibromatosis 1 Natural History and Biology of Skin Neurofibromas in Neurofibromatosis Type 1 Vision, Attention and Reading in Neurofibromatosis Type 1 (NF1) Children Neuropsychological Impairment and Quality of Life in Neurofibromatosis Type 1 Spinal Abnormalities in Neurofibromatosis Type 1 (NF1) Neurofibromatosis Type 1 Patient Registry Frameshift Peptides of Children With NF1 Prevalence of Constitutional Mismatch-repair Deficiency Among Suspected Neurofibromatosis Type 1/Legius Syndrome Children Without a Malignancy and Without a NF1 or SPRED1 Mutation How Neurofibromatosis Type 1 (NF1) Affects Schoolwork and Self-Esteem

Brief Title

Targeting the Mechanisms Underlying Cutaneous Neurofibroma Formation in NF1: A Clinical Translational Approach.

Official Title

Targeting the Mechanisms Underlying Cutaneous Neurofibroma Formation in NF1: A Clinical Translational Approach.

Brief Summary

      The purpose of the research study is intended to use specimens (such as tissue) and medical
      information in the Laboratory of Musculoskeletal Oncology at the Van Andel Research Institute
      for laboratory research in Grand Rapids, Michigan. Small tissue samples of cutaneous
      neurofibromas will be collected as part of this research. The samples will help researchers
      learn more about cutaneous neurofibroma and help them better understand NF1. There are many
      different types of studies, both now and in the future, that can be done using the specimens
      they receive. These include using the specimens and information to look for new ways to
      diagnose and treat Neurofibromatosis Type 1 (NF1). The specimens may be used to study how
      genes affect health and disease, or how genes affect the way a disease or condition responds
      to treatment. Some of these studies may lead to new products, such as treatments or tests for
      diseases. Through this study, we hope to find better ways to understand and treat NF1 in the
      future.
    

Detailed Description

      Skin tumors in Neurofibromatosis Type 1 (NF1) are very common and diminish quality of life.
      Apart from surgery, very few treatment options exist. In comparison to other types of tumors
      in NF1, skin tumors receive less attention in the research world because they almost never
      turn into cancer. Under the microscope, skin tumors and plexiform tumors look similar,
      however they do not share the same growth potential, nor do they appear at the same time
      during development. These differences suggest that skin tumors are driven by different
      factors than plexiform tumors.

      In this study we will be harvesting CNFs from 3 groups of subjects in order to obtain a
      minimum of 18 tumors in three size categories: <5mm, 5-10mm, and >1cm. These sizes were
      selected based on the variable natural history of CNF progression where incipient lesions
      (typically <5mm) are more numerous and demonstrate a less aggressive growth pattern, whereas
      the intermediate group (5-10mm) represent a transition state towards growth to larger (>1cm)
      lesions. Interestingly, CNF growth tends to stall out at 3cm. We plan to do experiments that
      identify which factors are important to CNF progression, and then find matching drugs that
      can shrink the tumors.
    


Study Type

Observational


Primary Outcome

Harvesting Up To 74 CNFs From Patients to obtain 8 tumors in three size categories: <5mm, 5-10mm, and >1cm.

Secondary Outcome

 UV Exposure and NF1 History Questionaires

Condition

Cutaneous Neurofibromas

Intervention

Skin Biopsy


Publications

* Includes publications given by the data provider as well as publications identified by National Clinical Trials Identifier (NCT ID) in Medline.

Recruitment Information


Recruitment Status

Procedure

Estimated Enrollment

74

Start Date

May 2016

Completion Date

August 2018

Primary Completion Date

August 2018

Eligibility Criteria

        Inclusion Criteria:

          1. Any subject with an established diagnosis NF1 and CNFs. The diagnosis may be based on
             clinical criteria or genetic testing.

          2. Age >18 years.

          3. Specific Vulnerable Populations:Pregnant women and Adults with diminished
             decision-making capacity with defined legal guardian.

        Exclusion Criteria:

          1. Adults with diminished decision-making capacity with no defined legal guardian.

          2. Prisoners.

          3. Breastfeeding mothers.
      

Gender

All

Ages

18 Years - N/A

Accepts Healthy Volunteers

Accepts Healthy Volunteers

Contacts

Matthew R Steensma, MD, 616-486-2076, [email protected]

Location Countries

United States

Location Countries

United States

Administrative Informations


NCT ID

NCT02777775

Organization ID

2014-295


Responsible Party

Principal Investigator

Study Sponsor

Spectrum Health Hospitals

Collaborators

 Van Andel Research Institute

Study Sponsor

Matthew R Steensma, MD, Principal Investigator, Spectrum Health Hospitals


Verification Date

May 2016