Retinitis pigmentosa

Synonyms

1

Overview

Retinitis pigmentosa (RP) is a group of genetic eye conditions. In the progression of symptoms for RP, night blindness generally precedes tunnel vision by years or even decades. Many people with RP do not become legally blind until their 40s or 50s and retain some sight all their life. Others go completely blind from RP, in some cases as early as childhood. Progression of RP is different in each case. RP is a type of hereditary retinal dystrophy, a group of inherited disorders in which abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium (RPE) of the retina lead to progressive visual loss. Affected individuals first experience defective dark adaptation or nyctalopia (night blindness), followed by reduction of the peripheral visual field (known as tunnel vision) and, sometimes, loss of central vision late in the course of the disease.

Symptoms

Mottling of the retinal pigment epithelium with black bone-spicule pigmentation is typically indicative (or pathognomonic) of retinitis pigmentosa. Other ocular features include waxy pallor of the optic nerve head, attenuation (thinning) of the retinal vessels, cellophane maculopathy, cystic macular edema and posterior subcapsular cataract.

Diagnosis

The diagnosis of retinitis pigmentosa relies upon documentation of progressive loss in photoreceptor function by electroretinography (ERG) and visual field testing. The mode of inheritance of RP is determined by family history. At least 35 different genes or loci are known to cause "nonsyndromic RP" (RP that is not the result of another disease or part of a wider syndrome). DNA testing is available on a clinical basis for: RLBP1 (autosomal recessive, Bothnia type RP) RP1 (autosomal dominant, RP1) RH (autosomal dominant, RP4) RDS (autosomal dominant, RP7) PRPF8 (autosomal dominant, RP13) PRPF3 (autosomal dominant, RP18) CRB1 (autosomal recessive, RP12) ABCA4 (autosomal recessive, RP19) RPE65 (autosomal recessive, RP20) For all other genes, molecular genetic testing is available on a research basis only.

Prognosis

The progressive nature of and lack of a definitive cure for Retinitis Pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in Retinitis Pigmentosa prove promising for the future.

Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aides and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.

Treatment

There is no cure for retinitis pigmentosa; however, the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in Retinitis Pigmentosa patients.

Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients.[31] Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.

The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the USA. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the USA announced to soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.

The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the Retinitis Pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 Retinitis Pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.