Opitz syndrome

Overview

Smith-Lemli-Opitz syndrome is a developmental disorder that affects many parts of the body. This condition is characterized by distinctive facial features, small head size (microcephaly), intellectual disability or learning problems, and behavioral problems. Many affected children have the characteristic features of autism, a developmental condition that affects communication and social interaction. Malformations of the heart, lungs, kidneys, gastrointestinal tract, and genitalia are also common. Infants with Smith-Lemli-Opitz syndrome have weak muscle tone (hypotonia), experience feeding difficulties, and tend to grow more slowly than other infants. Most affected individuals have fused second and third toes (syndactyly), and some have extra fingers or toes (polydactyly).

Symptoms

This condition is characterized by distinctive facial features, small head size (microcephaly), mental retardation or learning disabilities, and behavioral problems. Malformations of the heart, lungs, kidneys, gastrointestinal tract, and genitalia are also common. Infants with Smith-Lemli-Opitz syndrome have weak muscle tone (hypotonia), experience feeding difficulties, and tend to grow more slowly than other infants. Most affected individuals have fused second and third toes (syndactyly), and some have extra fingers or toes (polydactyly).

Causes

Mutations in the DHCR7 gene cause Smith-Lemli-Opitz syndrome.

The DHCR7 gene provides instructions for making an enzyme called 7-dehydrocholesterol reductase. This enzyme is responsible for the final step in the production of cholesterol. Cholesterol is a waxy, fat-like substance that is produced in the body and obtained from foods that come from animals (particularly egg yolks, meat, poultry, fish, and dairy products). Cholesterol is necessary for normal embryonic development and has important functions both before and after birth. It is a structural component of cell membranes and the protective substance covering nerve cells (myelin). Additionally, cholesterol plays a role in the production of certain hormones and digestive acids.

Mutations in the DHCR7 gene reduce or eliminate the activity of 7-dehydrocholesterol reductase, preventing cells from producing enough cholesterol. A lack of this enzyme also allows potentially toxic byproducts of cholesterol production to build up in the blood, nervous system, and other tissues. The combination of low cholesterol levels and an accumulation of other substances likely disrupts the growth and development of many body systems. It is not known, however, how this disturbance in cholesterol production leads to the specific features of Smith-Lemli-Opitz syndrome.

Diagnosis

The diagnosis and cause of Opitz syndrome is often difficult to establish. In most cases, Opitz syndrome is diagnosed through a clinical evaluation and not through a blood test. This means a genetic specialist (geneticist) has examined the patient and found enough symptoms of Opitz syndrome to make a diagnosis. Since not all patients have obvious symptoms or even any symptoms at all, this can be a difficult task. It can also be difficult to establish whether an individual has an X-linked form or an autosomal dominant form, and whether it has been inherited or occurred spontaneously. In many cases, the geneticist has to rely on physical examinations or pictures of multiple family members and a description of the family's medical history to establish the cause of Opitz syndrome. In some cases the cause cannot be established.

Prognosis

For most patients, the prognosis and quality of life of Opitz syndrome is good, with individuals typically living a normal life span. The prognosis, however, is very dependent on the type of organ abnormality and the quality of medical care. Patients with severe heart defects and major abnormalities in the trachea and esophagus may have a poorer prognosis.