Multiple carboxylase deficiency- biotin responsive


Multiple carboxylase deficiency (MCD) results from a decreased activity of holocarboxylase synthetase (HCS) which is responsible for the biotinylation of the four biotin-dependent carboxylases found in humans. The disease can be treated with pharmacologic doses of oral biotin (biotin-responsiveness). The cDNA for HCS contains a biotin-binding domain deduced by analogy with the sequence and crystal structure of the E. coli BirA biotin ligase. E. coli birA$ sp-$ mutations causing biotin-auxotrophy all localize to this region. Of six point mutations I have identified in MCD patients, four localize to the biotin-binding region. In order to assess the HCS activity associated with patient mutations, I used an assay based on the expression of mutant HCS in E. coli. The method is based on the ability of mutant HCS to biotinylate the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase in a temperature-sensitive birA$ sp-$ E. coli strain using 3H-biotin as tracer. I have shown that all of the mutations cause a severe decrease in HCS activity. In addition, I have shown that five of the mutant HCS are biotin-responsive. These findings are a major contribution to the understanding of the mechanism of biotin-responsiveness.


The signs and symptoms of holocarboxylase synthetase deficiency typically appear within the first few months of life, but the age of onset varies. Affected infants often have immunodeficiency diseases, difficulty feeding, breathing problems, a skin rash, hair loss (alopecia), and a lack of energy (lethargy). Immediate treatment and lifelong management (using biotin supplements) may prevent many of these complications. If left untreated, the disorder can lead to delayed development, seizures, and coma. These medical problems may be life-threatening in some cases