Congenital disorder of glycosylation type 1K

Synonyms

1

Overview

General Introduction about Congenital disorder of glycosylation:

Congenital disorder of glycosylation (carbohydrate-deficient glycoprotein syndrome) is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems (especially the nervous system, muscles, and intestines) in affected infants.

Congenital disorders of glycosylation (CDG) is an umbrella term for a rapidly expanding group of rare genetic, metabolic disorders due to defects in complex chemical process known as glycosylation. Glycosylation is the process by which sugar 'trees' (glycans) are created, altered and chemically attached to certain proteins or fats (lipids). When these sugar molecules are attached to proteins, they form glycoproteins; when they are attached to lipids, they form glycolipids. Glycoproteins and glycolipids have numerous important functions in all tissues and organs.

Glycosylation involves many different genes, encoding many different proteins such as enzymes. A deficiency or lack of one of these enzymes can lead to a variety of symptoms potentially affecting multiple organ systems. CDG can affect any part of the body, and there is nearly always an important neurological component. CDG can be associated with a broad variety of symptoms and can vary in severity from mild cases to severe, disabling or life-threatening cases. CDG are usually apparent from infancy. Individual CDG are caused by a mutation to a specific gene. Most CDG are inherited as autosomal recessive conditions.

CDG was first reported in the medical literature in 1980 by Dr. Jaak Jaeken and colleagues. More than 80 different forms of CDG have been identified in the ensuing years. Several different names have been used to describe these disorders including carbohydrate-deficient glycoprotein syndromes. Recently, Jaeken and colleagues have proposed a classification system that names each subtype by the official abbreviation of its defective gene followed by a dash and CDG. For example, congenital disorder of glycosylation type 1a is now known as PMM2-CDG. PMM2 is the defective gene that causes this subtype of CDG.

CDGs are classified as Types I and II (CDG-I and CDG-II), depending on the nature and location of the biochemical defect in the metabolic pathway relative to the action of oligosaccharyltransferase. The most commonly used screening method for CDG, analysis of transferrin glycosylation status by isoelectric focusing, ESI-MS, or other techniques, distinguish between these subtypes, which are called Type I and Type II patterns. Currently, twenty-two CDG Type-I and fourteen Type-II subtypes of CDG have been described.

Congenital disorder of glycosylation type 1K:

Type Ik is caused by a defect on chromosome 16p13.3 and involves a defect in the gene for beta-1,4-mannosyltransferase. The disorder is generally fatal within a year or two of birth. The enzyme encoded by this gene catalyzes the first mannosylation step in the biosynthesis of lipid-linked oligosaccharides. This gene is mutated in congenital disorder of glycosylation type Ik

A multisystem disorder caused by a defect in glycoprotein biosynthesis and characterized by under-glycosylated serum glycoproteins. Congenital disorders of glycosylation result in a wide variety of clinical features, such as defects in the nervous system development, psychomotor retardation, dysmorphic features, hypotonia, coagulation disorders, and immunodeficiency. The broad spectrum of features reflects the critical role of N-glycoproteins during embryonic development, differentiation, and maintenance of cell functions.

Symptoms

  • Mental retardation
  • Severe psychomotor retardation
  • Failure to thrive
  • Reduced muscle tone (hypotonia)
  • Feeding difficulties
  • Fetal hydrops
  • Enlarged liver
  • Enlarged spleen
  • Unusual facial appearance
  • Large fontanel
  • Wide-set eyes
  • Small jaw
  • Hypogonadism
  • Contractures
  • Lack of reflexes
  • Cardiomyopathy
  • Epilepsy
  • Seizures
  • Fever
  • Progressively small head
  • Abnormal blood coagulation
  • Cerebral atrophy
  • Nephrotic syndrome
  • Reduced B cells
  • IgG deficiency
  • Dysmorphic features
  • Kidney disease
  • Abnormalities of the immune system
  • Cognitive impairment

Causes

The disease is caused by mutations affecting the gene represented in this entry.

Prognosis

This particular form of the disorder progresses rapidly and leads to early death.The prognosis of Congenital disorder of glycosylation type 1K usually refers to the likely outcome of Congenital disorder of glycosylation type 1K. The prognosis of Congenital disorder of glycosylation type 1K may include the duration of Congenital disorder of glycosylation type 1K, chances of complications of Congenital disorder of glycosylation type 1K, probable outcomes, prospects for recovery, recovery period for Congenital disorder of glycosylation type 1K, survival rates, death rates, and other outcome possibilities in the overall prognosis of Congenital disorder of glycosylation type 1K. Naturally, such forecast issues are by their nature unpredictable.

Treatment

No treatment is available for most of these disorders.