Spinocerebellar ataxia 7
Overview
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the protein ataxin-7, a protein of unknown function. In order to analyze the expression pattern of wild type ataxin-7 in detail, the murine SCA7 gene homolog was cloned and the expression pattern in mice analyzed. The SCA7 mouse and human gene exhibit a high degree of identity at both DNA (88.2%) and protein (88.7%) level. The CAG repeat region, known to be polymorphic in man, is conserved in mouse but contained only five repeats in all mouse strains analyzed. The arrestin homology domain and the nuclear localization signal found in human ataxin-7 is also conserved in the murine homolog. Expression of ataxin-7 was detected during mouse embryonic development and in all adult mouse tissues examined by northern and western blots. In brain, immunohistological staining revealed an ataxin-7 expression pattern similar to that in human, with ataxin-7 expression in cerebellum, several brainstem nuclei, cerebral cortex and hippocampus. Our data show high conservation of ataxin-7 both structurally and at the level of expression, suggesting a conserved role for the protein in mice and humans.
Symptoms
characterized by variable degeneration of the cerebellar cortex, the basal ganglia, the brainstem, the spinal cord, and the peripheral nerves
Causes
SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats.