Long QT syndrome type 1


The long QT syndrome (LQTS) is a rare congenital heart condition with delayed repolarization following depolarization (excitation) of the heart, associated with syncope (fainting) due to ventricular arrhythmias, possibly of type torsade de pointes, which can deteriorate into ventricular fibrillation and ultimately sudden death. Arrhythmia in individuals with LQTS are often associated with exercise or excitement. Individuals with LQTS have a prolongation of the QT interval on the ECG. The Q wave on the ECG corresponds to ventricular depolarization while the T wave corresponds to ventricular repolarization. The QT interval is measured from the Q point to the end of the T wave. While many individuals with LQTS have persistent prolongation of the QT interval, some individuals do not always show the QT prolongation; in these individuals, the QT interval may prolong with the administration of certain medications.


The LQT1 gene (KVLQT1, or KCNQ1) encodes for part of the IKs slowly deactivating, delayed rectifier potassium channel. More than 170 mutations (most missense) of this gene have been reported. Their net effect is a decreased outward potassium current. Therefore, the channels remain open longer than usual, with a delay in ventricular repolarization and with QT prolongation.


Arrhythmia suppression involves the use of medications or surgical procedures that attack the underlying cause of the arrhythmias associated with LQTS. Since the cause of arrhythmias in LQTS is after depolarizations, and these after depolarizations are increased in states of adrenergic stimulation, steps can be taken to blunt adrenergic stimulation in these individuals. These include: Administration of beta receptor blocking agents which decreases the risk of stress induced arrhythmias. Beta blockers are the first choice in treating Long QT syndrome. In 2004 it has been shown that genotype and QT interval duration are independent predictors of recurrence of life-threatening events during beta-blockers therapy. Specifically the presence of QTc >500ms and LQT2 and LQT3 genotype are associated with the highest incidence of recurrence. In these patients primary prevention with ICD (Implantable Cardioverster Defibrilator) implantation can be considered. Potassium supplementation. If the potassium content in the blood rises, the action potential shortens and due to this reason it is believed that increasing potassium concentration could minimize the occurrence of arrhythmias. It should work best in LQT2 since the HERG channel is especially sensible to potassium concentration, but the use is experimental and not evidence based.


* Congenital deafness - 0.5 points * Family history (the same family member cannot be counted for LQTS and sudden death) Other family members with definite LQTS - 1 point Sudden death in immediate family (members before the age 30) - 0.5 points